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Monte Carlo 
method

Invented by John von Neumann 
and Stanislaw Ulam for solving 
neutron transport in materials

Key idea: use random sampling to 
estimate deterministic quantities 
that are hard to compute exactly, 
such as definite integrals

Key concern: variance reduction. 
How to reduce number of 
samples to reach given level of 
accuracy probabilistically 



Terminology

Estimand: quantity whose value we want to know
○ (e.g.) probability of head on coin toss (P(h))

Estimate: approximation for estimand based on random observations (samples)
○ (e.g.) P(h) = 0.4

Estimator: rule for computing estimate from samples (e.g., n tosses, h heads Þ P(h) » h/n)
○ Observations (samples) are random variables so estimates produced by an 

estimator are also random variables, which have a mean and variance

Sample variance: how different are estimates produced by an estimator for different sets 
of observations of same size

○ Higher variance Þ need more samples to obtain given level of accuracy in 
estimate

Unbiased estimator: mean of estimates from estimator = true value at any given sample size
Biased estimator: mean of estimates = true value + bias



Applications of sampling

Estimate probabilities: frequency » probability
Estimate expectations (definite integrals)

• q is a vector of parameters
• Evaluate definite integral for fixed parameter values
• Example: policy evaluation in RL

Estimate gradients of expectations
• How does expectation change when q is changed?
• Gradient of expectation is not an expectation
• Example: policy improvement in RL
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Visualizing how expectation changes when parameter changes
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Log-derivative trick (I)



Log-derivative trick (II)

If we cannot evaluate integral analytically,
rewrite as expectation and use Monte Carlo sampling



Check
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Numerical integration (I)

• Divide interval [a,b] into n intervals (usually fixed size)
• Use a quadrature formula to estimate integral

• Forward-Euler (FE), backward-Euler (BE), trapezoidal, Simpson’s rule,….
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Convergence of forward-Euler 

Bernhard Riemann
(1826-1866)
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Drawback of numerical integration(II)

• Works well in 1D and 2D
• Curse of dimensionality: to achieve given accuracy, number of function 

evaluations grow as O(2d) for d dimensions 
• Not used for high-dimensional integrals
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Monte Carlo integration w/ uniform sampling

Reinterpret forward-Euler/backward-Euler
• Generate xi values using arithmetic progression
• Take average of f(xi) values and multiply by (b-a)
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Monte Carlo integration (capital letters for random variables)
• Generate Xi values by sampling uniform distribution U(a,b)

• Xi’s: independent identically distributed (i.i.d.) random 
variables

• Take average of f(Xi) values and multiply by (b-a)
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Correctness of Monte Carlo integration (I)

ÂMC(f;n) is random variable
What does it mean for random variable to 
approximate a deterministic quantity? Look at its 
mean and variance.

Intuition
• Let fmin and fmax be minimum and maximum 

value of f in interval [a,b]
•  fmin fmax
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Correctness of Monte Carlo integration (II)

fmin fmax

n=1
n=20

n=100

Convergence in probability



Monte Carlo estimation in deep RL: REINFORCE

REINFORCE algorithm
• Gradient ascent to optimize q using 

Monte Carlo estimates
• Sample trajectories out of s0 to estimate 
Ñq J(s0 ;q)

Variance of estimator can grow exponentially 
with number of steps (T) in trajectories

s0
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Reducing variance of Monte Carlo samples 

Increase number of samples  
• Expensive if obtaining samples is expensive

Stratified sampling: control distribution of samples
• Random may not be best because of sample clumping (birthday paradox)

Change function being integrated (f) to another function (g)
• If variance of g < variance of f, fewer samples needed
• Calculate estimate for integral of f from estimate for integral of g
• Many approaches

• Importance sampling
• Control variates
• Antithetic variates
• ……



Reducing sample clumping by stratified sampling

https://cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixA.pdf

Another approach: locality-
sensitive hashing (LSH)

Stratified sampling useful for 
spatial domains but perhaps 
not for policy spaces

https://cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixA.pdf


Importance sampling: intuitive idea

Expectation = area under purple curve
One possibility: uniform sampling in some large interval like [-1000,1000]

• Most samples will contribute little to overall sum
Better idea: sample only in important regions where |h(x)| = |p(x)f(x)| >> 0

• One possibility: uniform sampling in some interval like [-2,10]
• Even better: skew samples to positive x values
• Even better: sample from distributions whose “shape” is close to that of |h(x)|



Importance sampling

• Compute estimate for one expectation using a different distribution
• p(x): nominal/target distribution
• q(x): importance/proposal distribution

• !(#)
%(#): likelihood ratio 



Importance sampling in deep RL

Improve sample efficiency by reusing samples when q is 
updated to q1

Trajectories collected under q are valid trajectories for 
q1 but transition probabilities will be different in general

If q and q1 are close to each other, samples collected for 
q will be representative for q1 well

• Ensuring this in PPO/GRPO: clipping, KL-divergence 
check
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Control variates in Deep RL: baseline methods, advantage

https://en.wikipedia.org/wiki/Control_variates
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Control variates (general)

Pearson’s correlation coefficient
-1 £ rx,y£ 1



Control variates example (from Wikipedia)

https://en.wikipedia.org/wiki/Control_variates

https://en.wikipedia.org/wiki/Control_variates


Summary

Basic Monte Carlo estimation
● REINFORCE for policy optimization

Importance sampling 
● Sample efficiency in PPO, TRPO, GRPO

Control variates for variance reduction
● Baseline methods, advantage
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