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Monte Carlo
method

Invented by John von Neumann
and Stanislaw Ulam for solving
neutron transport in materials

Key idea: use random sampling to
estimate deterministic quantities
that are hard to compute exactly,

such as definite integrals

Key concern: variance reduction.

How to reduce number of
samples to reach given level of
accuracy probabilistically




Terminology

Estimand: quantity whose value we want to know
o  (e.g.) probability of head on coin toss (P(h))

Estimate: approximation for estimand based on random observations (samples)
o (e.g.)P(h)=04

Estimator: rule for computing estimate from samples (e.g., n tosses, h heads = P(h) ~ h/n)
o  Observations (samples) are random variables so estimates produced by an
estimator are also random variables, which have a mean and variance

Sample variance: how different are estimates produced by an estimator for different sets
of observations of same size
o  Higher variance = need more samples to obtain given level of accuracy in
estimate

Unbiased estimator: mean of estimates from estimator = true value at any given sample size
Biased estimator: mean of estimates = true value + bias




Applications of sampling

Buptea1(0)] = [ plas8)f(a)ds —
T distribution
VaEompienlf(0)] = Vi [ lai6)(a)ds 0 ninrs
N state action
: . DNN — — SElglCy—
Estimate probabilities: frequency = probability
Estimate expectations (definite integrals) Deep RL Policy Network
* @ is avector of parameters
* Evaluate definite integral for fixed parameter values T
* Example: policy evaluation in RL S
Estimate gradients of expectations
 How does expectation change when 6 is changed?
e Gradient of expectation is not an expectation
« Example: policy improvement in RL J(5:8) = Ernp(rig) [R(7)]
Vo J(s5;0) = VoE . pr.0) [ R(T)]




Visualizing how expectation changes when parameter changes
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Derivative wrt yi: How does Eyp(z;)[f ()] change as we change 7
Visually:

Sign of expectation = sign of y

Derivative of expectation: positive



Organization

Baseline Control Importance PPO,GRPO
methods variates sampling
Reducing variance
Unblasefl Monte Carlo integration Numerical integration:
Variance = O(Z T(Lh)) w/ uniform sampling forward-Euler, Simpson, ......
REINFORCE Estimatiop Curse of dimensionality

Log-derivative trick

Gradients of
expectation

Expectations

Vo [2 g(x;0)dx



Log-derivative trick (l)

VQEmNp(m;Q) [f(x)] = Ewwp(ac;Q) [f(x)VQlog(p(x,Q))]

Trick is based on two identities:

e Leibniz’s rule: assuming bounds of integral do not depend on 6

d d
T Ig(m,@)d:p—/x@g(wﬁ)dm

d : o 904+ A0)de — [ g(x;0)dx
37 o0V = i, Iy
[ lg(@0) + A0 % Lg(w:0) + O(A0)2de — [, g(w;0)da
= lim
AO—0 Af
_/i ( ‘9)d
- Tdt?g xZ; X

¢ Expectate rule: for any function h(z) and distribution p(z) s.t. h(x)#0 = p(z)#0

/zh(x)da; = /zp(x)de = Eprop(a) [M]

p() p()




Log-derivative trick (ll)

Single parameter ¢

d d
@Exwp(xgg) f(z)] = T / p(x;0)f(x)dx (Definition of expectation)
d
= | f(x)=p(x;0)dx (Leibniz rule)
T df If we cannot evaluate integral analytically,

f( )i ( 9) rewrite as expectation and use Monte Carlo sampling
L) 3 PATL;
(Expectate rule)

Multiple parameters ¢




_(Exwp(x;u) [.CE]) d,LL \/% /

T2 dr=pu =

_emw? )dx—/

<i)Epr(x N) _ﬂEwNP(w;u) [7] =1

«(z —p)e”

Definite Integrals Associated with Gaussian
Distributions

In physical systems which can be modeled by a Gaussian distribution, one sometimes needs
to obtain the average or expectation value for physical quantities. If these properties depend
on x, then they can be integrated to find the average value. For the first five powers of x, the
integrals have the following forms:

_[e“":dx = 7” Tx‘e"“:dx = ;
_fxe‘-“za'x =1 Jx e’dx= I

Ixze‘**dx = g J.xse “dx=1
0




Organization

Control
variates

Reducing variance

Importance
sampling

Unbiased

Variance = O( m)

n

Numerical integration:

Monte Carlo integration
forward-Euler, Simpson, ......

w/ uniform sampling

Estimatio . . .
Curse of dimensionality

f; h(z;0)dx

DOHETETS Log-derivative trick

Gradients of
expectation

\7) f; g(x;0)dx



Numerical integration (l)

* Divide interval [a,b] into n intervals (usually fixed size)

* Use a quadrature formula to estimate integral
* Forward-Euler (FE), backward-Euler (BE), trapezoidal, Simpson’s rule,....

n—1 n—1

App(fin) = (b—a) x fx;) = (b—0a) * Zf(:cl) where z; = a—i—b_a * i
i=0 " n i=0 n

N b—a n b—a .

Apr(fin) = - ) * ;f(:cz) where x; = a+ P



Convergence of forward-Euler

) fix)
A(f) = [, f(x)dx /\ /
e b / -
. —a -a .
App(fin) = - *Z%f(xl) where z; = a+ ki
= X
a X3 X X3 b
b—a
A(f) = App(fin)| < m(l;;a)2 where m is max value of |f'(z)| in [a,b]

b
Jim App(fin) —/a f(x)dx Bernhard Riemann

(1826-1866)

Other quadrature formulas converge faster (Simpson’s rule error: O(-%))




Drawback of numerical integration(ll)

THE CURSE OF
DIMENSIONALITY

* Workswellin 1D and 2D

* Curse of dimensionality: to achieve given accuracy, number of function
evaluations grow as O(29) for d dimensions

* Not used for high-dimensional integrals



Organization

Control
variates

Reducing variance

Importance
sampling

Unbiased

Variance = O( m)

n

Numerical integration:

Monte Carlo integration
forward-Euler, Simpson, ......

w/ uniform sampling

Estimatio . . .
Curse of dimensionality

f; h(z;0)dx

DOHETETS Log-derivative trick

Gradients of
expectation

\7) f; g(x;0)dx



Monte Carlo integration w/ uniform sampling

%1

n—1
i 1
Arp(fin) = (b—a) x ﬁ;f(xz) where z; = a+ n

—_———
average of f(z;) values

f(x)

/

a X; X X3 b
b—a
n

Reinterpret forward-Euler/backward-Euler
* Generate x;values using arithmetic progression
» Take average of f(x;) values and multiply by (b-a)

Aye(fin) = (b—a) * %Z f(X;)  where X; ~ U(a,b)

average of f(X;) values

f(x)

/

X

a Xo Xg X X3 b

Monte Carlo integration (capital letters for random variables)
* Generate X;values by sampling uniform distribution U(a,b)

* X/s:independentidentically distributed (i.i.d.) random
variables

* Take average of f(X)) values and multiply by (b-a)



Correctness of Monte Carlo integration (l)

n—1 flx)
Ayo(fin) = (b—a) ! Z f(X3) where X; ~ Ul(a,b)

average of f(X;) values

a Xz X4 Xl X3 b

Ayc(f:n) is random variable

What does it mean for random variable to
approximate a deterministic quantity? Look at its

i n=100
mean and variance.
Intuition pdf (f (X))

* Letf,;,,andf,, be minimum and maximum n=20

value of fin interval [a,b] n=1
D LS () by (X \\
° enote - ;f( i) by f(X3;)

f(XZ) S [fmzn; fmam]



https://www.scratchapixel.com/images/monte-carlo-methods/beanmachine.m4v
https://www.scratchapixel.com/images/monte-carlo-methods/beanmachine.m4v
https://www.scratchapixel.com/images/monte-carlo-methods/beanmachine.m4v
https://www.scratchapixel.com/images/monte-carlo-methods/beanmachine.m4v
https://www.scratchapixel.com/images/monte-carlo-methods/beanmachine.m4v

Correctness of Monte Carlo integration (ll)

AMC(f% n)=(b-

a) *

n—1

1

- Z f(X;) where X; ~ U(a,b)
i=0

average of f(X;) values

Unbiased estimator:

ot (Anc(fin)) =

hm AMC’ f7

/ f(z (Law of large numbers)

n=100

pdf (f(Xi))

Convergence in probability



Monte Carlo estimation in deep RL: REINFORCE

T
REINFORCE algorithm So
» Gradient ascent to optimize 0 using
Monte Carlo estimates
* Sample trajectories out of s,to estimate
Vod(so;0) J(538) = Brapir R = [ p(ri0)R(r)dr
Variance of estimator can grow exponentially T_1 '
with number of steps (T) in trajectories p(r;0) = [ mo(Ailsi) *P(sigalsi, As)
i—) T~ T~ g

policy network environment

n independent random variables X; with means p; and variances o;

n

(X1 X5 Xp) = |07 + 1d) H/% > 1] o?
i=1 i=1

=1




Organization

Control Importance
variates sampling

Reducing variance

Unbiased

Variance = O( m)

n

Numerical integration:

Monte Carlo integration
forward-Euler, Simpson, ......

w/ uniform sampling

Estimation . . .
Curse of dimensionality

f; h(z;0)dx

DOHETETS Log-derivative trick

Gradients of
expectation

\7) f; g(x;0)dx



Reducing variance of Monte Carlo samples

0% (Apc(fin)) = O(2L

Increase number of samples
* Expensive if obtaining samples is expensive

Stratified sampling: control distribution of samples
* Random may not be best because of sample clumping (birthday paradox)

Change function being integrated (f) to another function (g)
* If variance of g <variance of f, fewer samples needed
e Calculate estimate for integral of f from estimate for integral of g
* Many approaches
* Importance sampling
e Control variates
* Antithetic variates



Reducing sample clumping by stratified sampling

Random Stratified N-Rooks
. oS NS e Another approach: locality-
-, R N Nl R sensitive hashing (LSH)
, ', 0 0 el ., , ) . Stratified sampling useful for
OREnE. of [\ ° ). spatial domains but perhaps
S ™ o ) ’ not for policy spaces
.Multi-J;ittered :Quasi-Rand:)m Poisson-Disc.

Figure A.4: An illustration comparing several 2D sampling approaches each using 16 samples. Purely
random sampling (top left) can suffer from clumping, which increases variance by undersampling other

regions of the integrand. All of the other approaches illustrated try to minimize this clumping to reduce
variance.

https://cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixA.pdf



https://cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixA.pdf

Importance sampling: intuitive idea

D)Y:Z'nr' 4-__/05 Q EmNN(l,l) [aj]

Expectation = area under purple curve

One possibility: uniform sampling in some large interval like [-1000,1000]
* Most samples will contribute little to overall sum

Better idea: sample only in important regions where |h(x)| = |p(x)f(x)] >> 0
* One possibility: uniform sampling in some interval like [-2,10]
* Even better: skew samples to positive x values

* Even better: sample from distributions whose “shape” is close to that of |h(x)|



Importance sampling

Eyrop(a)f ()] :/p(a:)f(:zz)dx: /q(x)%dw (Expectate rule)
[P

Xi)
i ~ q(X;
Z q(X5) (%)
* Compute estimate for one expectation using a different distribution
* p(x): nominal/target distribution
* g(x): importance/proposal distribution

. pE ; likelihood ratio

q(z) p

If o2 (p(x) f(x)) < 0%(f(x)), sample efficiency is improved.




Importance sampling in deep RL

Improve sample efficiency by reusing samples when 0 is
updated to 07

Trajectories collected under 6 are valid trajectories for
01 but transition probabilities will be different in general

If © and 0 are close to each other, samples collected for
0 will be representative for 6" well

* Ensuring this in PPO/GRPO: clipping, KL-divergence

check
H(5:8) = Brapirgn (RO = [ plrs0) AT R(ryar
;0
= L op(ri0) {%R(ﬂ]

J(5:0) = Eypiop [R(7)] = / p(r: ) R(7)dr

-
T-1

P(T;Q):H ZTQ(AHSQ * P(siy1]si, Ai)

policy network environment

0!
90/'.—'.

Gradient ascentin
parameter space




Control variates in Deep RL: baseline methods, advantage

hiz) = @ - &(Q +  Elg(x)]

function of interest easy to compute easy to compute

Distribution for expectations and variances: U~[0, 1]
Elg(z)] should be a good approximation for E[f(z)]
Special case of control variates in Monte Carlo literature

Intuition:

(i) Efh(z)] = E[f(z)]
(ii) E[g(x)] is computed analytically
(i) E[f(x)—g(z)] provides correction to E[g(z)] and is estimated by sampling

E[f(x)] = Elh(a) m( > f(xi)—g(wz-)> +El()

Variance: o?(h(z)) = o?(f(2)) + o%(g(z)) — 2% Cov(f(z),g(x))
Win if Cov(f(z),g(x)) > 20%(g(z)) (f(z), g(x) are strongly correlated)

Note: variance can increase if g(z) is badly chosen!

E[f(x)]
—————— i ——— =
=
i
0 %X
U ~[0,1]

g(x) is a baseline for f(x)

https://en.wikipedia.org/wiki/Control variates



https://en.wikipedia.org/wiki/Control_variates

Control variates (general)

o) = )+ o+ gle) ~Els))
——
corrected function  function of interest 2% constant easy to compute known
, 1 &
Elh(z)] = ~ Y (f(Xi) + e x (9(X:) - Elg(a)])
i=1

Expectation: E[h(z)] = E[f(z)] + c* (E[g(z) — E[g(z)]) = E[f(z)]

So E[h(z)] is unbiased estimator for E[f(z)]

Pearson’s correlation coefficient

Variance: o2(h(z)) = o?(f(z)) + c20*(g(z)) + 2c * Cov(f(z), g(x)) 1< p <
S PryS
Variance minimized when ¢ = —% — /
Cor?(f(2).g(x) e

o”(h(z)) = o*(f(z))|1 - 20 @)og@)] = ° (f(@)(1 = pzy)

Note that o?(h(z) < o?(f(x)). No win if zero correlation between f and g.




Control variates example (from Wikipedia)

We would like to estimate

1
1
I = / dz
0 1 + x
using Monte Carlo integration. This integral is the expected value of f(U) where

FU) = 1iU

and U follows a uniform distribution [0, 1]. Using a sample of size n denote the points in the sample as

uy, -+, Uy. Then the estimate is given by
1
I~ — Uu;).
2 )
Now we introduce g(U) = 1 + U as a control variate with a known expected value

1
Eg((U)] = / (1+z)dz = % and combine the two into a new estimate
0

Tm =3 flu) +e (% > glw) - 3/2) .

Using n = 1500 realizations and an estimated optimal coefficient ¢* ~ 0.4773 we obtain the following
results
Estimate Variance
Classical estimate | 0.69475  0.01947
Control variates 0.69295 0.00060

https://en.wikipedia.org/wiki/Control variates



https://en.wikipedia.org/wiki/Control_variates

Summary

Basic Monte Carlo estimation
« REINFORCE for policy optimization

Importance sampling
« Sample efficiency in PPO, TRPO, GRPO

Control variates for variance reduction
« Baseline methods, advantage



References

* Well-written introduction to Monte Carlo integration and variance reduction
e https://cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixA.pdf

* Using control variates for reducing variance in Monte Carlo rendering
* https://cs.dartmouth.edu/~wjarosz/publications/rousselle16image.pdf
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